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ON A METHOD OF EXTR~L CONTROL* 

M.I. LOGINCV 

An encounter game problem /1,2/ is analyzed on a prescribed time interval for con- 
trolled objects whose dynamics are described by nonlinear differential equations. 
It is assumed that the game's payoff is a convex function, differentiable in some 
domain, of the difference between the objects' final states. Under specific con- 
ditions a procedure is justified for the formation of an extremal strategy of one 
of the players, guaranteeing him a game result no worse than in the corresponding 
programmed maximin problem for the initial position. By example it is shown that in 
the case of nonlinear systems the procedure described in the paper for constructing 
the optimal strategy covers certain irregular situations in which the extremal aim- 
ing rule developed for linear /l/ and nonlinear /3/ controlled systems is inapplic- 
able. In the case of linear systems the conditions found in the paper ensure the 
regularity of the encounter game problem and, as shown in /4/, the method proposed 
for solving the encounter problem occupies an intermediate position between the 
extremal aiming rule /1,2/ and the direct methods in differential game theory /2,5/. 

1. Consider the motions Y(t) and z(2) of controlled objects described by the nonlinear 
differential equations 

y' = f(" (t, Y) + 4"' (t, u), n E P, Y E R" fl.1) 

a = j@' (t, z) + a"' (t, v), u E Q, 2 E R" 

(the sets P and Q are compacta in RP and Rq , respectively). We assume that the motions y(t) 
and z(t) are examined on a prescribed interval [&,,+I and that the payoff is determined by the 
equality 

Y [111 = o ((2 (6)&n - {Y (@)}m) = 0(x (W 

where a(x) is a prescribed function of the vector-valued argument x; {z],, (Y}= are vectors com- 
posed of the first m components of vectors z and Y . Having the choice of the control uE P 

(uEQ) at his disposal, the first (second) player tries to minimize (maximize) the quantity 
*II&]. By U(. 1 t,@)and V(. [ t,6)we denote the sets of Borel-measurable functions u(s): T +P 
and v(a): T +Q, where T - [t, 61; by Y (7; t, Y, u (-1) and z (T; t, Z, V (*)), 2 E T we denote the 
solutions of Eqs.fl.1) generated by the controls u(*) and v(e) under the initial conditions 

Y (t) = I? 2 (t) = 2. Let 

where 1 is an arbitrary nonzero in-dimensional vector; the prime denotes transposition. 

Condition 1. A. The functions f(i),~i)(~ = 1,z)are continuous in all variables, while 
the functions f9 (i = 1,2) are continuously differentiable in the variables Y and z , respect- 
ively,andsatisfy the conditions 

s'?i) (t, x) Q c (II 5Il* + 1) (i = 1, 2; c = const) 

B. The function o(x) is convex and has continuous and uniformly bounded derivatives in 
domain G == {I 1 o (5: > infz u (a)). 

C. The sets 
Qi (4 = {p”’ lp”) = ir”) (t, u), u E P}, Q, (t) = ($2) f 4’” = 

@ 09 v). 21 eQ1 
are convex for all *6Z Ito, 61 

D. For any unit vector 1 the maximum in the right-hand sides of equalities (1.2) isreach- 
ed on a unique programmed motion {y" (r; t, Y, Z),z" (7; t,z, E)} generated by the vector-valued func- 
tions {f$n (2; u" (r; t. Y, I)), q@) (r; d (z; t, 2, 1))). 
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We note that when Condition 1 is fulfilled the attainability domains G, (t. 6, Y) and 
G, (t,s,z) of motions {Y (z; t, y, u (-))},* and {S (a; i,r, v(*))},, corresponding to the initial 
position (t, y,z}, are convex campacta i.nR"' by the instant r =6 /3/, while the quantities 
PZ and Pz are the support functions of sets G, and Ga . Let (I} be the function adjoint 
/6,7/ to the convex function a(.~) , i.e., a(l) = sup,(Z'r-- a(z)} and L = dome(.) = {EER"'\ 
0 (1)< m 1. The equality 

u(x) = max {Z'r- w (2)) 
kL 

is valid /6/ on the strength of Condition 1B. We introduce into consideration the programmed 
maximin quantity for the initial position {$a, y,, z~} 

The adjoint function m(l) is convex: therefore, on the basis of the general minimax theorem 
/8/ we can write 

so (10, Yo, 20) = "eg {Pa (k6, to, so) - p1 (I, 6, tot Yo) - w(Z)} (1.3) 

Condition 2. Let L” = tD(&,,y,,z,) be the set of vectors I on which the maximum in the 
right-hand side of equality (1.31 is reached. At least one nonzero vector 1'7 P(&J+ Ye, 20) EL” 

exists such that: 
A. The derivatives 

8y" (ft, t, y, 1") / ay = Y 16; t, Y, E”1, &” (6, tl 21 1”) I h = 2 [6; t, 2, PI 

continuous in all variables, exist for any position {t,Y,z). 
B. The function 

x (4 & Y, 2) = n.ln l' (Y K+ tr YY ~Ol}'qt') (t, +-In? I'{2 re; t, z, l"Qm'Q4"'(& #) 
(1.4) 

is convex in 1 for all {t,Y,z) where {Y}, and {Z), are n x m-matrices composed of the 
first m CO~LUMS of matrices Y and Z. 

C. For any absolutely continuous functions Y(1) and Z(t) and for almost all t(tE [k,,el) 
the maxima in the equalities 

P’{Y ES; t, y (t), l”l}m q*(‘) = max 
eQ@l 

1”’ {Y I@; t, Y (t), 1ol},‘p 

I”’ (2 16; t, 2 (t), Pl}m’q*@) =,z;dfj p’ {Z l@; t, z (t), Pl),‘g 

are reached on the unique vectors q*(l) = q,,(l) (t, y (t), P) arev3 q*(‘) = !7*“’ (t, Z (t), I”). 
In the general case it is difficult to verify Conditions 1 and 2 for nonlinear Systems. 

However, we can find requirements on the first-approximation system which ensure the fulfil- 
ment of Conditions 1 and 2 for the quasilinear controlled objects 

Y' = A@f (tjy + B(l) (t) 2.4 + w (Y, t1t 11 Y II Q P (1.5) 

z* = .4@) (t)z + IL?@) (t) v + hPQ (2, th ii vii <v 

where h is a Small parameter and the fW(i = $,2) are continuous in tE [to,61 and twice con- 
tinuously differentiable in the phase variables. Let Y [6, tl and 2 (6, tl be the fundamental 
matrices ofthelinear homogeneous systems corresponding to Eqs.(l.S) with h=O, ZJ=: s=O. 
Then Conditions 1 and 2 can be replaced /9/ by the following two requirements: 

1) for any unit vector t the functions 

p" (t) = II I' {Y 16, tl Is(‘) (t)}, /I: p (t) = II 1’ (2 16, tl B(Q (t))?Al 

vanish at a finite number points tj(Q (the tl(i) are from the intervali&, 61 1, and 

2) the function 

I d%“‘ldf I,+ >/I?>0 (k=const, i=1,2) 



Let us estimate the 

we write lit as Ae = 
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Allowing for the uniqueness of the programmed motions fi"(. t, y, I") and 2O (* t, 2, P) , we obtain 

The 

(2.2) 

function x($, t,Pt 2fof (1.4) is convex in I and positive-homogeneous; therefore it is 
support function of the nonempty convex set 

H(t, y,z)= ocQ I{Y [6; t,y,zq},'Ql(t) - @l% t* 29 %t'4"'V~ 41 

Relying on Pontriagin's maximum principle and on the results in /3/ (or on the dynamic 
programming method), with due regard to Condition 2C it can be shown that for almost alltE 

If,, 61 the inclusion 

where q*(‘) = q*(l) (t, y, If], F”), q+t2) = qJ*) (t9 z [t], l”) , is valid. From (2.1) and (2.2) I the eontinu- 
ity of vector 2 and of the matrices Y and z , and the fact that the vector-valued functions 
n"'(%, U0 (z; t, yrfl, 1”)) and pfn)(T; ~"(2; $,z (11, F)) satisfy the maximum condition, we obtain 

i-W 
Aa== 5 s’ fZ, y filt 2 p-1) MY 1% TY Y ~~1, Iolh’ Ql Dl - 

{Z r;; 2, a IT], r]lm ip (z, v [?I) - ho (‘t, Y I’GIP 1 IW d-t + 0 (4 

Further, aLlowing for the form of the set H(T, y [T)+ 2 [%I) ,we conclude that from any realiza- 
tion L/IT] we can find 4 = s(r) such that 

thus, by choosing U= U* we get that 2 itI does not grow on the interval ffe,@h Now taking 

into account that the equalities 

2 tfbl sex 8” @o. lioio, a01 

E 161 = (I ((2 Itrl), - {bc ml), 

hold by the construction of the auxiliary function e[tlr we conclude that the theorem's as- 
sertion is valid. 

We note that if the function x(& 8, y, 2) is concave in E for a.11 (&Iz~~)~ then by inter- 
changing the roles of V. and u in the preceding arguments we can obtain a strategy v*guarante- 
eing the second player the result 

(Y 161 I to, Yo, RI, v*1 b 8 (b YO? GJ 

3. Example. I,& the behaviors of the pursuer and evader object be described by the 
equations 
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and let 
y [%l = I(!41 0 - I1 (%))' + ($5 (%) - $8 (%))*I"'* x > 0 

We denote by PL (I, 1, e) and pp(8, t,z) the support functions of the attainability domains Gi(%,t.~i) 

and c,(%, t,x) . Carrying out the necessary computations , analogous to those in /9f, we obtain 

tp (I* t+ YV 6.V = PI (I* :, 1) -h (I, t, II) = f, (2, + (% - 0=*+ 
h (% - 0’ (Q - y*9/2) f 2, (2, + (% - t)t; f- x (% - 1) (2.8 - 

YrV2) + ho Iha (% - tw + h (% - t) ‘(Q - Y**)/21 + 

IZ Iha (% - t)Y4 + b (% - f)’ (Q - y&/2] + 

WV (% - t)‘ (+ - ysv4+ 22 a (% - t)‘ (Z& - y,)/4 f 

&*R (2 I y I li) I, m f t 

(Z~a3_t~*~~~Z~~~-~~(f~1,...,4), P=i,V=l+a(%-_)*A) 

We select the initial position (to, VO, ZO) such that to = 0, I,@ = P,~, %a* = z,@, y,fi - 1~0 = a > 0. We 
denote 

and we select +,,I~~ such that 
cr, = =I, Ic - k&“, cr, = ‘f&c - k&’ 

where the parameters k, and k, are defined below. Under the assumptions made 

pr - p; = V, kc(e(c + U -b (It'-+ Z& + Xb (r$ + Z,? $ h* (R - k&- ~kd,) 

We denote II=wss, ~,=sinq, then 

~'&I~ YOI 4) =ti~$!+~) ==er@(cp, X, k,, kp) 

The sum of the first two summands is maximal for the following values of cp: 

p = ig 
12* (3.1) 

and the magnitude of this maximum equals #!cf4+bb. Using the implicit function theorem we 
can show that for sufficiently small hi we can find parameters kx and k, such that the func- 
tion @ has precisely three local maxima for cP'O)(A),'P"'(X),cp'*)(~) corresponding tothevalues (3.1) 
when L=O, and they are equal. The quantity s"(fO,yO,aO) is positive if fle14+ b>O or, set- 
ting a=(l+2~., we obtain the condition 

cr%, C%_ y*cl+*= +*+:@ % 
[ 2 I 

70 (3.2) 

The function x (I,t,y,r,L) computed for the vector z@)(J.)($~)(O) = (flf2, o/2) has the form 

This function is convex for all realizations v@),z[t] (Oqr<%) if e sufficiently large and 

7Ti 
uao+Gcl> %(f+21/2)--y- [ 3 8 (3.3) 

Conditions (3.2) and (3.3) are fulfilled if ylo+ztio= 2.09%. Thus, we have found and initial 
position for which there is no regularity in thesenseof /1,3/, but the method described in 
the paper remains applicable. 

The author thanks E.G. Al'brekht and A.f. Subbotin for constant attention to the work. 
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